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Abstract: This paper presents the pricing and valuation of two-asset options. Assuming an 
arbitrage-free market, a pricing model of two-asset option is established by assuming that the prices 
of both underlying assets follow the Poisson jump-diffusion process. A closed-form expression for 
the option price is derived using risk-neutral valuation. 

1. Introduction 
Among the various types of exotic options available in the market, rainbow option is one of the 

most interesting. A rainbow option has payoff that is contingent on the prices of multiple underlying 
assets. In this paper, the author presents the pricing of a rainbow option with two underlying assets, 
which is referred to as the two-asset option. Two-asset options are often used by investors to lock in 
a benefit from the “best performance” of two alternative financial instruments. For example, an 
investor may have an interest to invest in stock index A and B, while being uncertain on which stock 
index will yield higher returns in the future. Therefore, he may choose to purchase a two-asset option 
to ensure a profit from the best returns of the two indices on the maturity date.  

Consider a market consisting of n risky assets with prices denoted by 𝑆𝑆𝑖𝑖, i= {1,2…n}. While it is 
appealing to assume that each price follows a Geometric Brownian Motion (which leads to the 
Black-Scholes framework), in reality, the arrival of critical information causes discontinuous shocks 
to stock prices (i.e. jumps). Based on such observation, Merton established a jump-diffusion model 
for European option pricing in [2]. Further development along this path is presented in [3], where it 
is assumed that the relative magnitude of the price jump is governed by the relative importance of the 
information causing the jump. Jump-inducing information is classified into several categories 
according to its relative importance. Merton's model is thus modified and the pricing formula of 
European stock options is obtained. This paper contributes to the literature by extending the results 
of [2] and [3] to the pricing of the two-asset option, which to the best of our knowledge has not been 
the subject of a published study.  

We assume that both assets obey the Poisson jump-diffusion. The pricing equations of the 
two-asset option are derived by using the no-arbitrage principle under a risk-neutral measure, and the 
corresponding option pricing formula is given. 

2. Model Specifications 

Consider a financial market consisting of three assets �𝐵𝐵(𝑡𝑡), 𝑆𝑆1(𝑡𝑡), 𝑆𝑆2(𝑡𝑡)�. 𝐵𝐵(𝑡𝑡) is the price of a 
risk-less asset (bonds), and 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝑖𝑖 = {1,2} denote the prices of two risky assets (usually stocks) 
that can be continuously traded. Suppose they all follow the Poisson jump process, that is, the 
uncertainty of the process includes a "normal" diffusion and an "abnormal" jump.  

 
𝑑𝑑𝑆𝑆1(𝑡𝑡)
𝑆𝑆1(𝑡𝑡)

= (𝜇𝜇1 − 𝜆𝜆1𝜅𝜅1)𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑑𝑑𝑊𝑊𝑡𝑡
1 + 𝑈𝑈1𝑑𝑑𝑞𝑞𝑡𝑡1                                              (1) 

 
𝑑𝑑𝑆𝑆2(𝑡𝑡)
𝑆𝑆2(𝑡𝑡)

= (𝜇𝜇2 − 𝜆𝜆2𝜅𝜅2)𝑑𝑑𝑑𝑑 + 𝜎𝜎2𝑑𝑑𝑊𝑊𝑡𝑡
2 + 𝑈𝑈2𝑑𝑑𝑞𝑞𝑡𝑡2                                              (2) 

where: 
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𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖  are the expected returns and volatilities of stock i, 𝑊𝑊𝑡𝑡
𝑖𝑖 , 𝑖𝑖 = {1,2}  denotes two 

standard Brownian Motions with correlation 𝜌𝜌, 𝑞𝑞𝑡𝑡𝑖𝑖  are two independent Poisson processes of 
strength 𝜆𝜆𝑖𝑖. Namely: 

{ dt is occurrence ofy probabilit heT1
dt1 is occurrence ofy probabilit The0

i
t

i

i
dq l

l
，
， −=  

Moreover 
𝑈𝑈𝑖𝑖 is the jump size of stock price i when the first Poisson jump occurs 
𝜅𝜅𝑖𝑖 = 𝜀𝜀(𝑈𝑈𝑖𝑖), where 𝜀𝜀(. ) denotes the unconditional expectation. 
Let 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖 , 𝜆𝜆𝑖𝑖 , 𝜅𝜅𝑖𝑖 be constant parameters, the solutions of equation (1) and (2) are respectively 

obtained by Doléans-Dade exponential formula. 

𝑆𝑆1(𝑡𝑡) = 𝑆𝑆1(0) exp��𝜇𝜇1 − 𝜆𝜆1𝜅𝜅1 −
1
2
𝜎𝜎12� 𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑊𝑊𝑡𝑡

1�� �1 + 𝑈𝑈1𝑗𝑗�
𝑞𝑞𝑡𝑡
1

𝑗𝑗=0
 

𝑆𝑆2(𝑡𝑡) = 𝑆𝑆2(0) exp��𝜇𝜇2 − 𝜆𝜆2𝜅𝜅2 −
1
2
𝜎𝜎22� 𝑑𝑑𝑑𝑑 + 𝜎𝜎2𝑊𝑊𝑡𝑡

2�� �1 + 𝑈𝑈2𝑗𝑗�
𝑞𝑞𝑡𝑡
2

𝑗𝑗=0
 

Here 𝑈𝑈𝑖𝑖𝑖𝑖 is the i-th jump-size of stock j (j= {1,2}), which are independent and identically 
distributed with initial conditions 𝑈𝑈𝑖𝑖,0 = 0, 𝑖𝑖 = {1,2}.   

3. The Pricing Equation 

Let 𝑊𝑊(𝑡𝑡) = 𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡) be the time-t value of the option given the price of the two stocks. F is 
second-order differentiable and continuous with respect to 𝑆𝑆1 and 𝑆𝑆2, and first-order differentiable 
with respect to t. From (1) and (2), the option value cam be described by the following process: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑊𝑊(𝑡𝑡)

= (𝜇𝜇𝑊𝑊 − 𝜆𝜆1𝜅𝜅1𝑊𝑊 − 𝜆𝜆2𝜅𝜅2𝑊𝑊)𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑊𝑊𝑑𝑑𝑊𝑊𝑡𝑡
1 + 𝜎𝜎2𝑊𝑊𝑑𝑑𝑊𝑊𝑡𝑡

2 + 𝑈𝑈1𝑊𝑊𝑑𝑑𝑞𝑞𝑡𝑡1 + 𝑈𝑈2𝑊𝑊𝑑𝑑𝑞𝑞𝑡𝑡2         (3) 

 
where,  
𝜇𝜇𝑊𝑊 is the expected return of options.  
𝜎𝜎1𝑊𝑊 is the volatility of the option return in a period of no jump.   
𝑈𝑈𝑖𝑖𝑖𝑖 is the size of the i-th jump. 

• 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝜀𝜀(𝑈𝑈𝑖𝑖𝑖𝑖). 

By Ito’s Lemma, we have: 
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σ1W =
σ1S1𝐹𝐹1(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)
𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)

                                                                      (5) 

 

σ2W =
σ2S2𝐹𝐹2(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)
𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)

                                                                     (6) 
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The subscript of F represents partial differential. 𝜀𝜀𝑖𝑖 , 𝑖𝑖 = {1,2} are the expectation operators 𝑈𝑈𝑖𝑖.  
For a portfolio consisting of two stocks 𝑆𝑆1(𝑡𝑡), 𝑆𝑆2(𝑡𝑡), option W(t), and a risk-free asset 𝐵𝐵(𝑡𝑡), 

with weights respectively given by 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = {1,2,3,4}, where 
 

�𝑤𝑤𝑖𝑖

4

𝑖𝑖=1

= 1. 

 
Let 𝑃𝑃�𝑡𝑡� be the time-t value of this portfolio, which can be shown to follow 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑃𝑃(𝑡𝑡)

= (𝜇𝜇𝑃𝑃 − 𝜆𝜆1𝜅𝜅1𝑃𝑃 − 𝜆𝜆2𝜅𝜅2𝑃𝑃)𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑃𝑃𝑑𝑑𝑊𝑊𝑡𝑡
1 + 𝜎𝜎2𝑃𝑃𝑑𝑑𝑊𝑊𝑡𝑡

2 + 𝑈𝑈1𝑃𝑃𝑑𝑑𝑞𝑞𝑡𝑡1 + 𝑈𝑈2𝑃𝑃𝑑𝑑𝑞𝑞𝑡𝑡2             (7) 

 
Where 
𝜇𝜇𝑃𝑃 is the expected return of the portfolio 
𝜎𝜎𝑖𝑖𝑖𝑖 is the volatility of portfolio returns when no jump occurs, 
𝑈𝑈𝑖𝑖𝑖𝑖 is the portfolio value jump size when the i-th jump occurs. 
 

• 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝜀𝜀(𝑈𝑈𝑖𝑖𝑖𝑖) 
From (1), (2), (3), we have: 

𝜇𝜇𝑃𝑃 = 𝑤𝑤1𝜇𝜇1 + 𝑤𝑤2𝜇𝜇2 + 𝑤𝑤3𝜇𝜇𝑊𝑊 + (1 − 𝑤𝑤1 − 𝑤𝑤2 − 𝑤𝑤3)𝑟𝑟 
𝜎𝜎1𝑃𝑃 = 𝑤𝑤1𝜎𝜎1 + 𝑤𝑤3𝜎𝜎1𝑊𝑊 
𝜎𝜎2𝑃𝑃 = 𝑤𝑤2𝜎𝜎2 + 𝑤𝑤3𝜎𝜎2𝑊𝑊 

𝑈𝑈1𝑃𝑃 = 𝑤𝑤1𝑈𝑈1 + 𝑤𝑤3
𝐹𝐹(𝑆𝑆1(1 + 𝑋𝑋1), 𝑆𝑆2, 𝑡𝑡) − 𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)

𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)
 

𝑈𝑈2𝑃𝑃 = 𝑤𝑤2𝑈𝑈2 + 𝑤𝑤3
𝐹𝐹(𝑆𝑆1, 𝑆𝑆2(1 + 𝑋𝑋1), 𝑡𝑡) − 𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)

𝐹𝐹(𝑆𝑆1, 𝑆𝑆2, 𝑡𝑡)
 

 
Select weights 𝑤𝑤1 = 𝑤𝑤1∗, 𝑤𝑤2 = 𝑤𝑤2∗, 𝑤𝑤3 = 𝑤𝑤3∗ so that  
 

𝜎𝜎1𝑃𝑃∗ = 𝑤𝑤1∗𝜎𝜎1 + 𝑤𝑤3∗𝜎𝜎1𝑊𝑊 = 0 
𝜎𝜎2𝑃𝑃∗ = 𝑤𝑤2∗𝜎𝜎2 + 𝑤𝑤3∗𝜎𝜎2𝑊𝑊 = 0 

 
The portfolio value thus follows: 
 

𝑑𝑑𝑃𝑃∗(𝑡𝑡)
𝑃𝑃∗(𝑡𝑡)

= (𝜇𝜇𝑃𝑃∗ − 𝜆𝜆1𝜅𝜅1𝑃𝑃∗ − 𝜆𝜆2𝜅𝜅2𝑃𝑃∗ )𝑑𝑑𝑑𝑑 + 𝑈𝑈1𝑃𝑃∗ 𝑑𝑑𝑞𝑞𝑡𝑡1 + 𝑈𝑈2𝑃𝑃∗ 𝑑𝑑𝑞𝑞𝑡𝑡2                                      (8) 

 
Assuming that the jump risk in non-systematic, that is, the jump process is not driven by the 

market factors, then the expected return of the portfolio is equal to the risk-free rate r. Therefore: 
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Substitute (4), (5), (6) into the above system of equations, we observe that F satisfies the 

following differential equation: 
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Note that if 𝜆𝜆1 = 𝜆𝜆2 = 0 , then we get the pricing equation of a two-asset option whose 
underlying stock prices follow continuous processes (see [1]): 
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4. Option Pricing Formula 
For a European two-asset call option, F satisfies equation (9) with terminal condition:  
 

𝐹𝐹(𝑆𝑆1, 𝑆𝑆2,𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆1, 𝑆𝑆2)                                                                (10) 
 

T is the expiry of the option. This indicates an option payoff of: 
 

).0),()(max()())(),(max( 12121 TSTSTSTSTS −+=  
 

Therefore, the two-asset European option can be decomposed into a combination of a risky asset 
and an asset exchange option. 

For options with only one risky asset, let = 𝑇𝑇 − 𝑡𝑡 , the following holds: 
It satisfies 
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Theorem 1: The solution to equation (11) is given by: 
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Proof: 
The partial derivatives for (12) are: 
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We have: 
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So 𝐹𝐹(𝑆𝑆1, 𝜏𝜏) meets the terminal condition 𝐹𝐹(𝑆𝑆1, 𝜏𝜏) = 𝑆𝑆1.  
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Theorem 2: For asset exchange options, the following holds 
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The solution of the definite problem is 
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Proof: See [5]. 
In summary, by superposition principle as well as the results of (12) and (13), the following 

results are obtained. 
Theorem 3: Under the Poisson Jump-Diffusion stock price model given by equation (1) and (2), 

the risk-neutral value of a two-asset option with payoff in equation (10) is given by: 
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